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Introduction 

Lending Club is a United States peer-to-peer lending company that was founded in 2006.              

It is the first peer-to-peer lender to trade publicly and provide a secondary market for loan                

trading. It currently trades on the New York Stock Exchange and has a market cap of $2.34                 

billion. It is the world’s largest peer-to-peer lending company with almost $25 billion in loans               

being originated through its platform [1]. 

Lenders don’t lend directly to borrowers, as is the case with some other peer-to-peer              

lenders. Instead, borrowers apply for loans online and Lending Club reviews the loan             

application based on the borrower’s credit score, credit history, debt-to-income ratio, and            

other factors. From there, Lending Club rejects approximately 90% of the loan applications as              

the company has decided to only focus on high creditworthy borrowers. The loans can be from                

$500 to $40,000 for a 3- or 5-year term and if accepted, they are then placed on the Lending                   

Club website for investors to browse. Investors then can choose to buy “notes” from Lending               

Club that are graded A to G according to the risk of default. The money that the investors                  

provide is the money that the borrowers receive for their loan amount. These loans provide               

lower rates than a typical bank because of Lending Club’s low-cost structure with operations              

fully online and no branch infrastructure. Lending Club makes money off of these loans by               

charging borrowers an origination fee and charging lenders a service fee. 

The goal of this project is to predict loan defaults from the Lending Club database. This                

will help Lending Club in their initial decision of whether to grant borrowers loans or not. Our                 

prediction doesn’t take the time of default into account at all, but just predicts if a loan will                  

default at any time over the term of the loan. We downloaded our dataset from the Lending                 

Club website as a CSV and used all available loan data from 2007 to 2011. Lending Club has data                   

available for later years but we decided to only use loans that aren’t still being paid on. Since                  



Lending Club only provides three- and five-year loans, all loans that originated in 2011 or               

sooner would be defaulted on or fully paid off by now. The original data set that we used had                   

42,538 observations and 110 predictors. 

 

Data Cleaning 

After downloading the data, we focused on reducing the number of predictors. Our first              

step in doing this was by deleting all columns with a large amount of N/A values. This data set                   

had a lot of missing data and we removed 58 predictors by deleting all columns where more                 

than 80% of the values were N/A’s. Then, we reduced the number of predictors from 52 to 18                  

by manually going through and deleting all columns that we thought wouldn’t have any              

predictive value. This included deleting a lot of variables that had to do with the investor’s                

information. We didn’t think that knowledge of the investor’s finances would help in prediction              

at all since they have no participation in paying back the loan. We also deleted predictors such                 

as application type, number of tax liens, and number of bankruptcies, where nearly all of the                

loans had the same value. Since there was no differentiation in these predictors between loans,               

we didn’t believe that they would provide any predictive value. Finally, we deleted predictors              

that didn’t make any conceptual sense to us in predicting loan status such as zip code, state,                 

and loan description. After looking at the data and the consistency of loan default rates among                

states (with the exception of a few outliers in very small sample size states), we decided that                 

geography would not be helpful in prediction. The loan description column was filled with long               

descriptions where some borrowers rambled on about why they needed the loan and             

mentioned many unnecessary details. We decided there would be no way to quantify this              

column and that it wouldn’t be helpful. 

Our final data set we used for our model had 42,538 observations and 18 predictors. All                

18 of the final predictors are listed in the table below with their descriptions. ​We created a                 

binary response variable called “is_bad” that determined whether each loan was a default or              

not. There were originally six classes for this variable, but we assigned a zero value to the fully                  

paid loans and assigned a value of one to the other five classes. Those five classes were Charged                  

off, Does not meet credit policy: charged off, Does not meet credit policy: fully paid, Late 16-30                 



days, and Late 31-120 days. We decided to group the classes like that based on previous work                 

[2][3] that grouped the binary variable that way and because we wanted to separate fully paid                

loans from loans that would cause Lending Club any type of trouble. Next, feature engineering               

is a very important part of machine learning and we worked to notice relationships between               

variables and attempted to create new variables that would have predictive value. The first new               

feature we created is called “time_since_first_credit” and is the “earliest_cr_line” minus the            

“issue_d”. This ended up being one of our variables with the most predictive value, as you will                 

see later in the paper. Next, we created a feature called “perc_recv” which is the amount of                 

principal received (one of the 52 trimmed predictors) divided by the “loan_amnt”. This ended              

up having predictive value, but the problem is that this information wouldn’t be available to               

Lending Club at initiation when borrowers are applying for loans. Therefore, we didn’t use this               

feature in our model but it could potentially be used by Lending Club in another model that is                  

used to predict borrower’s default risk over time as they pay their loan.  

 

Predictor Description 

loan_amnt Listed amount of the loan applied for by the borrower 

term The number of monthly payments on the loan (36 or 60) 

int_rate Interest rate on the loan 

installment The monthly payment owed by the borrower 

grade Lending Club assigned loan grade 

sub_grade Lending Club assigned loan subgrade 

emp_length Employment length in years (0-10+) 

home_ownership The home ownership status of the borrower (Rent, Own, 

Mortgage, Other) 

annual_inc The self-reported annual income of the borrower 



verification_status Indicates if income was verified by LC, not verified, or if the 

income source was verified 

issue_d The date which the loan was funded 

dti A ratio calculated using the borrower’s total monthly debt 

payments divided by the borrower’s self-reported monthly 

income 

earliest_cr_line The date the borrower’s earliest credit line was was opened  

open_acc Number of open credit lines in the borrower’s credit file 

revol_bal Total credit revolving balance 

revol_util The amount of credit the borrower is using relative to all 

available revolving credit 

total_acc The total number of credit lines currently in the borrower’s credit 

file 

time_since_first_credit earliest_cr_line minus issue_d 

 

Before we began working on our model, we looked for previous work done on this data.                

There were multiple projects that used logistic regression, but they all had problems with low               

accuracy and a high number of false negatives. We decided that false negatives would be more                

harmful for Lending Club than false positives, so we focused on reducing the amount of those.                

Incorrectly predicting a bad loan as a good loan (false negative) is more costly because it leads                 

to the direct loss of money by having a borrower default. As opposed to incorrectly predicting a                 

good loan as a bad loan (false positive), which would just be an opportunity cost of turning                 

away profitable customers. This isn’t a good thing but is easily fixable by just generating more                

business and doesn’t have as much of a long-term negative effect as false negatives. ​We also                

looked into K-nearest neighbors (KNN) but did not find any projects that used KNN on this data                 



set. This is because the data set is too large and computation time would be an issue, therefore                  

we also decided not to use the KNN method. 

 

Exploratory Data Analysis 

Below are a few visualizations and graphs that we looked at as we explored the Lending                

Club data. Directly below you can see the amount of accepted loan applications by state. As                

expected, the states with the most amount of loans are the most populous states (California,               

New York, Florida, Texas).  

 

 

To the left, you can see the distribution of         

loans by term. Approximately three-quarters     

of the loans are 36-month loans, which is good         

news since those have a higher percentage of        

fully paid loans. Below this you can see the         

distribution of loans by loan amount. Even       

though loans on Lending Club are available for        

anywhere from $500 to $40,000, more than       

70% of the loans made are from $500 to         

$15,000. 



 

 

 

 

 

  

 

 

 

 

In the graph below is the distribution of loans by employment length. Lending Club              

purely focuses on borrowers with high creditworthiness. By far, the largest amount of loans are               

given to borrowers with employments lengths of 10+ years, which would indicate a more              

predictable borrower and fall in line with Lending Club’s policy. 

 

Lending Club assigns a loan grade to each loan for investors to know the quality of each                 

loan with A being the highest quality and G being the lowest. Below you can see the distribution                  

of loans by these given grades. Default rates obviously get higher as the loan grades get lower.                 



But staying in line with their mission of focusing on high creditworthy borrowers, you can see                

that approximately three-quarters of the loans are given to borrowers that are assigned loan              

grades of A, B, and C.  

 

 

 

 

 

 

 

Finally, we have a map of the percentage of loans in each state that are defaults. Across                 

most states, there is a very reasonable default rate between seventeen and twenty percent, but               

there are a few outliers. The states of Idaho, Nebraska, Indiana, and Tennessee have              

abnormally high default rates but there are an extremely small amount of loans in each of these                 

states so they are just random outliers and we didn’t adjust for this in our model at all. 

 

 

 

 



Modelling  

 

Training and Test Splits 

The dataset containing 42,538 observations, as a convention, was split as training (70%) and              

testing (30%). Most of the hyperparameters available for the machine learning algorithm were             

tuned on the training set using tune.grid and cross-validation. Even in cross-validation, the             

number of folds were kept as a tunable parameter. The objective was to strike a balance in                 

increasing both the accuracy of the model and decreasing the number of false negatives of the                

model. 

 

Machine Learning 

 

Logistic regression and SVMs have been tried before as a part of modeling <insert citations>.               

Also, these results tend to vary a lot due to the fundamental difference in choosing predictors                

for the problem. Our goal was to let LC get a fair idea of whether a borrower would default or                    

not and hence, the predictors chosen were the ones that are usually available to LC before the                 

loan period begins. This limits the choice of predictors. Prior attempts in this field have chosen                

other predictors which include details about the funds investors have promised to invest but              

these are available only after the investors are chosen and the loan period has begun. For this                 

reason, we have not included these predictors in our analysis. 

 

The prevalent failure of the aforementioned methods and promising results in trees influenced 

us to dwell more on tree based methods. The major methods using trees are decision trees, 

random forests and the relatively recent XGBoost methods. 

 

Decision Trees 

Package Used : rpart 

 

Using default parameters of the tree gave an accuracy of 81.5% but this was at the cost of recall                   

(0.13) and good precision (0.98). This problem is one that’s seen in all prior work. On an                 



average, most models end up predicting 75% of default loans as good loans.  

 

We use ​rpart ​package in R - it uses several methods described in the book, CART (Classification                 

And Regression Trees). A key reason why we chose ​rpart ​was because it has inbuilt ways to                 

handle missing values; manual imputations are thus deemed redundant.  

 

To give negative classes more penalty when misclassified, we tune the parameter ‘scale_pos’             

and decide on a 1:3 scaling ratio for the underlying outcome variables. Also, instead of allowing                

the default threshold of 0.5, we get the outcome variables as the probabilities of a test data                 

point belonging to one of the two classes and tune the threshold so as to give us fewer false                   

negatives.  

 

We notice that the important predictors using rpart tend to be ​grade, interest rate, issue date,                

revolving balance.​ After tuning all the parameters, we get the best possible results. 

 

 Accuracy Recall 

Before Tuning 0.81 0.13 

After Tuning 0.66 0.60 

 

Final Model  

 

 

 

 

 

 

 

 

 

 



Random Forests 

Package Used : randomForest 

 

In theory, Random Forests should perform better than decision trees as they reduce variance 

by building n-trees. It essentially builds n decision trees using a bagged sample of data from the 

training set and using the rest of the data set for validation.  

 

As a thumb rule, we start by setting mtry (number of predictors) to be the square root of the 

number of columns in the dataset. Also, we tune the number of trees parameter from 1 to 50. 

After plotting a graph between error and number of trees (500), we notice that after the error 

converses well within 50 trees and hence, there is no point in training using 500 trees. Similar to 

the previous analysis, we predict the probabilities for each observation belonging to one of the 

two classes and tune the threshold to decrease the false negative rate.  

 

By default, similar to the previous analysis, the default parameters give us an accuracy of 82% 

(0.8125 to 0.8255 under a 95% confidence interval) and a recall of 0.08. We tune and increase 

the recall at the cost of accuracy. We get an accuracy of 68% but we have increases the recall to 

0.70. 

 

 Accuracy Recall 

Before Tuning 0.82 0.08 

After Tuning 0.68 0.70 

 

 

 

 

 

 

 

 



We also check the variable importance plot. 

 

 

 

 

 

 

Inference : revol_bal, revol_util, time_since_first_credit, annual income are important 

predictors as seen from the plot. According to the gini index, issue_d, sub_grade, revol_bal, 

emp_length are better predictors in terms of separating the two classes.  

 

XGBoost 

Packages Used : xgboost, data.table, plyr 

 

eXtreme Grading Boosting (XGBoost) is an open source library which provides a tree based              

gradient boosting framework. It was first used in Higgs Machine Learning challenge and was              

developed by Tianqi Chen as a research project. It won the competition and has since been                

used in several machine learning and data science competitions.  

 

It is a supervised learning algorithm which uses an objective function <insert objective             

function> which contains a training loss term and a regularization term. Subsequently, by             

building decision stumps and updating the objective function by utilizing the errors, it optimizes              

the objective function on the training set. By specifying parameters such as the number of folds                



in cross-validation, maximum depth to which the trees should be built, the learning rate etc.,               

we can tune the xgb model. One major constraint in operating with xgboost is that it uses a                  

data.table/matrix in all its calculations. It becomes imperative that we switch our datasets from              

a data frame (containing different types of variables) to a numerical matrix.  

 

As with previous training models, we first let the default parameters output train a model and 

then we tune it using a grid search. The parameters that can be tune are number of folds in the 

cross validation, number of trees (or rounds), maximum depth to which the trees can go, 

learning rate, scaling ratio etc. The results are shown below. 

 

 

 Accuracy Recall 

Before Tuning 0.68 0.34 

After Tuning 0.74 0.80 

 

The parameters in the final xgbmodel are : 

 

nrounds.cv 100 

nfolds 4 

scale_pos_weight 0.4 

max_depth 5 

eval_metric “auc” 

max_delta_step 1 

 

 

Comparison 

Since we do not have an estimate of how much loss is incurred due to delinquent loans, we 

cannot say for sure at what threshold LC will begin making profit. To get around this problem, 

we plot the RoC curves of each of the model and decide which one might be a better fit. It 



would finally be up to the user of the algorithm to decide which model to go with. The XGB 

model with a low false negative rate and comparatively high accuracy would be the 

recommended best model for this analysis. 

 

 

 

 

Comparing the three tree-based models 

Algorithm Accuracy Recall 

Decision Tree 0.66 0.60 

Random Forest 0.68 0.70 

XGBoost 0.74 0.80 

 

 



We decide to use the XGBoost model since it has a much higher accuracy and lower false 

negative rate as compared to other models.  

 

 

Strengths: 

● The computation time of trees is much less than KNN, which takes us too much time to                 

process.  

● Trees are more flexible and more scalable to large datasets than any other models we               

tried to use. We have 42,538 data points in the original data set. But if we include more,                  

we need a model which could scale or accommodate rapid increase in size quickly and               

easily. So we use models which are scalable.  

● The XGBoost model is fast and we can customize parameters in this model. 

 

Weaknesses: 

● XGBoost model is not easy to interpret. Unlike linear regression where we can see the               

coefficient of each predictor clearly, in our model, the direct relation between            

predictors and response variable cannot be determined.  

● Also for XGBoost model, it is difficult to tune because of the large number of               

parameters. 

 

 

Future Scope 

We would like to improve our model for prediction and there are many ways to do that.  

● Include FICO scores in the dataset and analysis. FICO is a person’s credit score which can                

measure the credit risk of clients accurately. In our database, we don’t have this variable               

but if we had it, we can make a more precise prediction.  

● Include data from subsequent years. Our data is from 2007-2011 and this is the only               

available complete payment cycle on the Lending Club website. We are willing to             

include more data as time passes to make predictions using a larger data set.  

● More feature engineering could be used in prediction. For the limitation of predictors             



and knowledge, those three tree based models are relatively reasonable, but actually,            

the prediction model could be more complicated and detailed in real life.  

● After modeling, we came up with a really fresh idea to make an application for Lending                

Club and people only need to input parameters like clients’ annual income,            

debt-to-income ratio, etc. then the default probability pops up automatically. 

 

 

Conclusion 

Tree based models have relatively better accuracy as compared to other models and that’s why               

we see them as better models. When Lending Club uses the model, we want to assign each loan                  

a probability for Lending Club to make their own decision, not to just automatically accept or                

deny loans. Also, Lending Club can set the threshold in the model according to different               

conditions, which would help Lending Club avoid accepting applications from customers who            

have high default risk with efficiency and flexibility. 
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